
LAB1 : User level thread
By qqc

qiuqichen@bupt.edu.cn

User level thread

• Background

• Setup the environment

• Brief introduction to skeleton of code

• Debug

• Submitting

User level thread

• Background

• Setup the environment

• Brief introduction to skeleton of code

• Debug

• Submitting

Basic idea

• We are going to implement a simple stackful coroutine.
• Asymmetric means there is a scheduler.

• Stackful means each instance of a coroutine has its own stack.
• In contrast to stackless coroutines, stackful coroutines allow invoking the suspend

operation out of arbitrary sub-stackframes, enabling escape-and-reenter recursive
operations.

• Here’s a diagram of our design.

Scheduler/Main thread

User program

yield

resume
coroutine

Context
• A context is a data structure that stores some key information

when executing a user-level thread.
• No need to store temporary variables or heap variables

• But we do need some additional space to make a stack for each coroutine.

• Store a subset of registers is enough.

• FPU and some flag registers are not considered.

Calling convention

long myfunc(long a, long b, long c, long d,
long e, long f, long g, long h)

{
long xx = a * b * c * d * e * f * g * h;
long yy = a + b + c + d + e + f + g + h;
long zz = utilfunc(xx, yy, xx % yy);
return zz + 20;

}

Assembly

• Use ChatGPT to help you
read or write (if needed) the
assembly.

User level thread

• Background

• Setup the environment

• Brief introduction to skeleton of code

• Debug

• Submitting

Setup the environment

• You can use your linux environment directly
• gcc , git , make are needed

• If you’re using a dev container in Windows, you may encounter
some problems:
• You may need to install wsl2 in Win11

• wsl --update

• Downgrade dev container to 0.26.1
• Sometimes it may fail to fetch software when building due to network

timeout. Just try again.

• Any question?

User level thread

• Background

• Setup the environment

• Brief introduction to the skeleton of code

• Debug

• Submitting

Overview

.

|-- Makefile

|-- README.md

|-- pingpong.c test1

|-- recursion.c test2

|-- simple.c test3

|-- switch.S assembly that used to exchange context

|-- uthread.c user thread library(your work)

`-- uthread.h declaration of user thread library

Example Usage of thread_switch
int main(){

long long sp;
main_thread = malloc(sizeof(struct uthread));
memset(main_thread,0,sizeof(struct uthread));

current_thread = malloc(sizeof(struct uthread));
memset(current_thread,0,sizeof(struct uthread));

current_thread->context.rip = (long long)test;
sp = ((long long)¤t_thread->stack + STACK_SIZE) & (~(long long)15);
sp -= 8;
(long long)sp = (long long)bug;
current_thread->context.rsp = sp;

thread_switch(&main_thread->context,¤t_thread->context);
printf("main\n");
return 0;

}

Example(cont.)

void bug(){
printf("missing return address\n");
exit(-1);

}

void test(){
printf("test\n");
thread_switch(¤t_thread->context,&main_thread->context);

}

Other tips

• Put function entry as _uthread_entry so that you can pass an
argument and set the thread flag

• There are many reasons why you encounter segment fault(for
example, setting a wrong pointer). You can use gdb or print to
locate the wrong.

User level thread

• Background

• Setup the environment

• Brief introduction to the skeleton of code

• Debug

• Submitting

A introduction to gdb
command function

r or run run the program

c or continue continue

b or break Set breakpoint

info locals See local variables

info reg See current register value

info args See current arguments

p or print Print data

x Print data in the address

n , ni next line, next assembly line

s , si step(do not skip function), step a assembly line

layout Change layout of gdb(option: layout tui,layout asm,layout src)

focus Focus on command line or window

frame See current frame

bt Back trace. See previous frame

Search “gdb cheat sheet” or ask ChatGPT
e.g: GDB cheat sheet (github.com)

https://gist.github.com/rkubik/b96c23bd8ed58333de37f2b8cd052c30

Example

• gdb ./demo

Other useful debugging tools

• objdump

• print(Remember to flush cache)

• ChatGPT

• etc.

User level thread

• Background

• Setup the environment

• Brief introduction to the skeleton of code

• Debug

• Submitting

Submitting

• git diff –color [commit id] > foo.txt
• E.g: git diff --color 5bd4126 > example.patch

• If you want to verify your patch:
• git checkout 5bd4126
• git apply example.patch

• check if all your changes are applied.

Q&A

Feel free to ask questions.

	幻灯片 1: LAB1 : User level thread
	幻灯片 2: User level thread
	幻灯片 3: User level thread
	幻灯片 4: Basic idea
	幻灯片 5: Context
	幻灯片 6: Calling convention
	幻灯片 7: Assembly
	幻灯片 8: User level thread
	幻灯片 9: Setup the environment
	幻灯片 10: User level thread
	幻灯片 11: Overview
	幻灯片 12: Example Usage of thread_switch
	幻灯片 13: Example(cont.)
	幻灯片 14: Other tips
	幻灯片 15: User level thread
	幻灯片 16: A introduction to gdb
	幻灯片 17: Example
	幻灯片 18: Other useful debugging tools
	幻灯片 19: User level thread
	幻灯片 20: Submitting
	幻灯片 21: Q&A

